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. . . ya 900
1. Oracle connect by construct for hierarchical queries:
select level, s.child, s.parent
from

(select 1 hr_ level, ptab.table name parent, dpt.table name child

from user constraints ptab, user constraints dc, user_part tables dpt
where dc.constraint name = dpt.ref ptn constraint name and
ptab.constraint_name = dc.r_constraint name)s

start with s.parent = 'OBJ_ROOT'

connect by prior s.child = s.parent

order by level desc;

: N 90

2. ANSI sql (“with clause”) construct for hierarchical queries:
with hs(hr_level, parent, child) as

(

select s.hr level, s.parent, s.child

from

(select 1 hr_ level, ptab.table name parent, dpt.table name child

from user constraints ptab, user constraints dc, user_part tables dpt
where dc.constraint name = dpt.ref ptn constraint name and
ptab.constraint_name = dc.r_constralnt name)s
where s.parent = 'OBJ_ROCT'

union all

select pr.hr level +1 hr_level, s.parent, s.child

from

(select 1 hr_level, ptab.table name parent, dpt.table name child

from user constraints ptab, user constraints dc, user part tables dpt
where dc.constraint_name = dpt.ref ptn constraint_ name and
ptab.constraint name = dc.r_constralint name)s

join hs pr on pr.child = s.parent

)

select * from hs
order by hr level desc;

FIG. 9
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-- <virtual center to data_ceter> relation join query (355->360)
select virtual center_id parent_id, 'virtual_center' parent_data_type,
data_center id child id, 'data_center' child data type

from virtual_center vc

1005 join data_center dc

using (virtual_center_id):

-- <virtual center to hosts> relation join query (355->365)
select virtual center id parent id, 'virtual center’
parent_data_type, host_id child_id, 'hosts' child _data_type
from virtual center vc

1010 join hosts h

using (virtual center id);

-- <data_center to hosts> relation Jjoin query (360->365)

select data_center_id parent_id, 'data_center’' parent_data_type,
host id child id, 'hosts' child data type

from data_center dc

1015 join hosts h

using (data_center_id):

/*

-- union query - combining the relation gqueries through a union

-- returning in its projection <parent_id, child_id> tuples of the all
the parents and children in the hierarchy

-- assuming single namespace for the object_ids (if not applicable
GUIDs need to be incorporated into the hierarchy objects)

*/

select virtual center id parent id, 'virtual center' parent data type,
data_center_id child_id, 'data_center’' child _data_type

from virtual center vc

join data_center dc

using (virtual center id)

union all

1020 select virtual center id parent id, 'virtual center’
parent_data_type, host_id child_id, 'hosts' child data_type

from virtual center vc

join hosts h

using (virtual center id)

union all

select data center id parent id, 'data center' parent data type,
host_id child_id, 'hosts' child_data_type

from data center dc

join hosts h

using (data center id);

FIG. 10
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-- hierarchy traversal query - for virtual center
with
hr (hier_root_id, hier root_data_type, parent_id, parent_data_type, child_ id,
child data type, child hierlevel)
as
(
select parent_id hier_ root_id, parent_data_type hier_root_data_type, parent_id,
parent_data_type, child_id, child_data_type, 1
from
-- start with
(select virtual center id parent id, 'virtual center' parent data type,
data_center id child id, 'data_center' child data_type
from virtual center vc
join data_center dc
using (virtual center id)
union all
select virtual center id parent id, ‘'wvirtual center' parent data type, host id
child _id, 'hosts' child data_type
from virtual center vc
join hosts h
using (virtual center id)
)
-- recurse
union all
select parent_query.hier_rcot_id, parent_query.hier_ root_data_type,
child_gquery.parent_id, child query.parent_data_type, child query.child_id,
child query.child data type,
parent query.child hierlevel + 1
from
(select virtual_center_id parent_id, 'wvirtual center’' parent_data_type,
data_center_id child id, 'data_center' child data_type
from virtual_ center vc
join data center dc
using (virtual center id)
union all
select wvirtual_center_id parent_id, ‘'virtual_center' parent_data_type, host_id
child_id, 'hosts' child data_type
from virtual center vc
join hosts h
using (virtual center id)
union all
select data_center_id parent_id, 'data_center’' parent_data_type, host_id
child_id, 'hosts' child data_type
from data center dc
join hosts h
using (data center id)
) child query
join hr parent_query

on (parent_query.child _id = child query.parent_id)
)
search breadth first by parent id set seq 1 1
cycle parent id set is cycle to 'l' default '0Q° :[:I(:}.

select hier root_id, hier_ root_data_type,
parent_id, parent_data_type, child_id, child data_type,
child_hierlevel, seq, is_cycle
from hr
where is cycle = 0
order by seq;
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LIFECYCLE REFERENCE PARTITIONING
FOR DATABASE OBJECTS

TECHNICAL FIELD

The subject matter of the present disclosure relates to sys-
tems and methods related to maintenance of the lifecycle for
database objects.

BACKGROUND

A database is an organized collection of data. Some data-
bases organize the data into hierarchies. For example, one
database object may represent a data center. The datacenter
may have one or more devices, and each device may have one
or more components. In the example above, the datacenter
object is the root of the hierarchy, with devices as children,
and each device may have one or more component children.

Object instances in a database commonly have 3 lifecycle
states. In the active stage the object has the ability to be
updated and form new relationships. In the inactive stage the
object is not being updated and not used to form new rela-
tionships, but the object is kept for historical persistence. For
example, when a new version of the object is created, the old
version may be needed for maintaining short term historical
persistence and/or for operational reporting. In the deleted
stage, the object is no longer needed from an application
functional perspective and can be deleted physically or
archived. The lifecycle state of an object aftects the perfor-
mance and scalability of the database and the maintainability
of the data set.

Problems associated with maintaining lifecycle states for
database objects include hindering access to active data, slow
or off-line purges of deleted objects, and complex hierarchies.
For example, while the inactive objects are necessary for
persistence and operational reporting, their existence can
slow down the data access to active data due to inflated
cardinality. Furthermore, deleted data (e.g., table rows with a
deleted lifecycle state) needs to be purged or archived peri-
odically from the database for performance reasons. But row
deletion is a very slow operation and may render a row-based
purge or archive impractical. Furthermore, row-level deletes
cause significant blocking in highly transactional systems,
slowing down overall database access times, and leading to
fragmentation that requires regular off-line database activity
(defragmentation) to maintain adequate database perfor-
mance. Application program requirements often make off-
line cleanup undesirable or impermissible, limiting database
objects lifecycle maintenance, including purging deleted
objects, to on-line procedures.

Reference partitioning in a database is a method of parti-
tioning of a group of tables together based on reference to a
field or fields in another related table. In reference partition-
ing, every child’s partitioning is a function of the partitioning
of its parent. In lifecycle management, the partitions may
represent the lifecycle state of an object, for example an active
partition with database objects in the active stage, an inactive
partition with database objects in the inactive stage, and a
deleted partition with database objects in the deleted stage,
with the child following the lifecycle partition of its parent.
Putting inactive and deleted objects in a separate partition
speeds access to active data, but many databases do not sup-
port reference partitioning, so this method of lifecycle man-
agement is unavailable to applications using such databases.
Additionally, databases that currently support reference par-
titioning do not support it for ragged hierarchies, e.g. children
having more than one parent, or hierarchies with cycles. Such
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2

hierarchies are complex hierarchies, as opposed to simple
hierarchies that do not include multiple parents or cycles.
Because many real-world applications involve complex hier-
archies, and because many databases do not support reference
partitioning at all, reference partitioning for lifecycle main-
tenance currently has limited usefulness.

SUMMARY

Systems and methods provide a database-agnostic frame-
work for on-line lifecycle management of database objects
utilizing the table partitioning tools currently provided by the
database environment. The framework uses a metadata defi-
nition of the object hierarchy that facilitates use of database
triggers for maintaining a reference partitioning across the
object hierarchy, even when the database itself does not sup-
port reference partitioning. Furthermore, the framework
makes reference partitioning possible for complex hierar-
chies (e.g., ragged hierarchies and cyclic hierarchies). The
framework synchronizes partitioning amongst related objects
and manages the lifecycle of underlying objects, hiding such
operations from the application programs that use and main-
tain the objects. Finally, the framework provides an on-line
maintenance process that cascades the object hierarchy and
purges (or archives) deleted objects in a high performance
manner—avoiding row-level deletes and data fragmentation.
Because the framework is database-agnostic, it can be used
with applications that access multiple different databases.

In one general aspect, a computer-implemented method in
a database partitioned based on a lifecycle state for database
objects, each database object being a row in a table and the
database objects being organized in a hierarchy, includes
receiving, from an application program, a new lifecycle state
for a root database object in the hierarchy and updating the
lifecycle state for the root object, thereby causing a table row
associated with the root object to change partitions in the
database. The method also includes locating a first database
object that is a child of the root object in the hierarchy and
applying an inheritance function associated with a class of the
child object to determine a lifecycle state for the first database
object. When the determined lifecycle state differs from a
current lifecycle state for the first database object, the method
also includes changing the current lifecycle state to the deter-
mined lifecycle state and moving a table row for the first
database object to a partition associated with the determined
lifecycle state. The method may include repeating the locat-
ing, applying, and changing for all children of the root object.

Implementations can include one or more of the following
features. For example, the first database object may have at
least two parent objects in the hierarchy and applying the
inheritance function can include determining the parent
objects using a parent retrieval query associated with the class
of' the first database object; and determining a lifecycle state
for the determined parent objects. As another example, the
inheritance function may be stored as an attribute of the class
in a metadata table and/or the hierarchy may include database
objects stored in at least two databases from different ven-
dors. In some implementations, the database may not support
reference partitioning. In another example, the new lifecycle
state for the root object may be a delete stage and the method
may also include traversing the hierarchy from the root
object, depth first, avoiding cycles and, at each leaf object of
the hierarchy, determining that a lifecycle state for the leaf
object is a deleted stage and issuing a partitioning mainte-
nance command for the database for the leaf object. In some
such implementations, traversing the hierarchy may be per-
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formed in accordance with a relation-join query associated
with a class of the root object.

In some implementations, when the application program
updates a foreign key of a second database object, the method
may also include applying an inheritance function associated
with a class of the second database object to determine a
lifecycle status of the second database object, setting a current
lifecycle status of the second database object to the deter-
mined lifecycle status, locating a third database object that is
a child of the second database object in the hierarchy, and
applying an inheritance function associated with a class of the
third database object to determine a lifecycle state for the
third database object. When the determined lifecycle state
differs from a current lifecycle state for the third database
object, the method includes changing the current lifecycle
state to the determined lifecycle state and moving a table row
for the third database object to a partition associated with the
determined lifecycle state. The method may also include
repeating the locating, applying, and changing for all children
of the second database object.

In some implementations, when the application program
inserts a second database object into the hierarchy, the second
database object being a non-root object for the hierarchy, the
method can include applying an inheritance function associ-
ated with a class of the second database object to determine a
lifecycle state for the second database object, A table row for
the second database object being stored in a partition associ-
ated with the determined lifecycle state for the second data-
base object.

In another general aspect, a system for reference partition-
ing database objects by lifecycle state can include at least one
hardware processor, at least one database environment, the
database environment supporting triggers and partitioning, at
least one application program, and memory. The memory can
store a lifecycle metadata framework that identifies classes in
a ragged hierarchy of database objects, identifies at least one
class as a root of the hierarchy, identifies, for each non-root
class, a lifecycle inheritance function for the class, and iden-
tifies, for each parent class-child class pair in the hierarchy, a
relation-join query, the relation-join query being a join
between tables in the database environment onto which the
parent class and child class are persisted. The memory may
also store triggers that use the framework to maintain life-
cycle states for non-root database objects, including at least a
first trigger invoked after a lifecycle state of a database object
in a root class is changed, a second trigger invoked when a
non-root database object is inserted, and a third trigger
invoked when a non-root database object has a change in
parent the system cause a processor to perform a process.

Implementations can include one or more of the following
features. For example, the first trigger may use the lifecycle
metadata framework to traverse the hierarchy from the data-
base object in the root class downwards, avoiding cycles, and
set a lifecycle state of each child database object reached in
the traversal according to the lifecycle inheritance function
for a class of the child database object, wherein the child
database object is assigned to a partition according to its
lifecycle state. As another example, the second trigger may
use the lifecycle metadata framework to determine a lifecycle
state for each parent database object of the inserted non-root
database object, apply the lifecycle inheritance function for
the class of the inserted non-root database object to determine
a lifecycle state for the non-root database object, and assign
the non-root database object to a partition according to the
determined lifecycle state.

In some implementations, the third trigger may use the
lifecycle metadata framework to determine a lifecycle state
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4

for each parent database object of the non-root database
object, apply the inheritance function for the class of the
non-root database object to determine a lifecycle state of the
non-root database object, wherein the database object is
assigned to a partition according to the lifecycle state, assign
the non-root database object to a partition according to the
determined lifecycle state, traverse the hierarchy from the
non-root database object downwards, avoiding cycles, and set
alifecycle state of each object reached in the traversal accord-
ing to the inheritance function for a class of the object reached
in the traversal.

In some implementations, the memory may also store
instructions that, when executed by the at least one processor,
cause the system to perform operations that include receiving
a root class of the hierarchy to purge, selecting a database
object of the root class, and traversing, using the framework,
the hierarchy downward from the database object, depth first,
avoiding cycles. The operations may also include, at a leaf
database object in the hierarchy, determining whether a life-
cycle state for the leaf database object is a deleted stage, and
when the lifecycle state is a deleted stage, issuing a truncate
partition command for the leaf database object, the truncate
partition command being a command supplied by the data-
base environment.

In some implementations, the framework may also include
a hierarchy traversal query for at least some of the classes and
a parent retrieval query for at least some of the classes. The
hierarchy traversal query for a first class may be generated
prior to the triggers being invoked and is associated with the
first class and stored in the framework. In some implementa-
tions, the generation of the hierarchy traversal query for the
first class can include using a hierarchical query, avoiding
cycles, to find the parent class-child class pairs where the first
class is the parent, construct a union query of the relation-join
queries for each parent class-child class pair found, the union
query returning a result set of identifiers for the parent class
and the child class, and using an outer hierarchical query,
avoiding cycles, to reach database objects in the tables iden-
tified in the union query using the result set of the union query.
In some implementations, the parent retrieval query for a first
class is generated prior to the triggers being invoked and is
associated with first class and stored in the framework. Gen-
eration of the parent retrieval query for the first class may
include using a hierarchical query, avoiding cycles, find the
parent class-child class pairs where the first class is the child,
constructing a union query of the relation-join queries for
each parent class-child class pair found, the union query
returning a result set of identifiers for the parent class and the
child class, and using an outer hierarchical query, avoiding
cycles, to reach database objects in the tables identified in the
union query using the result set of the union query.

In another general aspect, a method of database object
lifecycle maintenance for database objects in a ragged hier-
archy includes receiving a class, the class being a root in the
ragged hierarchy, the hierarchy being defined through a life-
cycle framework that defines classes in the hierarchy, parent-
child relationships between classes, and, for each parent-
child relationship, stores a join query. The method also
includes selecting a database object instance of the class,
traversing the hierarchy downward from the database object,
depth first, avoiding cycles, the traversal being accomplished
via a hierarchical query generated at least by a union of the
join queries for parent-child relationships related to the class.
The method also includes, at a leaf database object reached by
traversing the hierarchy, determining whether the leaf data-
base object is in a partition for deleted objects, and when the
leaf database object is in the partition for deleted objects,



US 9,311,381 B2

5

issuing a partition maintenance command for the leaf data-
base object, the partition maintenance command being a data-
base-provided command. The maintenance command may be
atruncate partition command or a command that archives the
partition. In some implementations, the hierarchical query
generated is associated with the class and stored as part of the
framework.

Another aspect of the disclosure can be embodied on a
computer-readable medium having recorded and embodied
thereon instructions that, when executed by a processor of a
computer system, cause the computer system to perform any
of the methods disclosed herein.

The details of one or more implementations are set forth in
the accompanying drawings and the description below. Other
features will be apparent from the description and drawings,
and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram that illustrates a database object
lifecycle reference partitioning system, according to an
implementation.

FIG. 2 is an example of a metadata definition for a lifecycle
framework that supports reference partitioning, according to
an implementation.

FIG. 3 illustrates example object diagrams for various
complex object hierarchies.

FIG. 4 is a block diagram that illustrates instances of data-
base objects in complex hierarchies, according to an imple-
mentation.

FIG. 5 is a flowchart illustrating an example trigger for
maintenance of reference partitioning after an update of a root
object, according to an implementation.

FIG. 6 is a flowchart illustrating an example trigger for
maintenance of reference partitioning after a child object is
inserted into the hierarchy, according to an implementation.

FIG. 7 is a flowchart illustrating an example trigger for
maintenance of reference partitioning after a foreign key
update of a child object, according to an implementation.

FIG. 8 is a flowchart illustrating a process for performing
an efficient on-line maintenance process using the lifecycle
framework, according to an implementation.

FIG. 9 is an example of queries that can be used in an
efficient on-line maintenance process in a database that sup-
ports reference partitioning, according to an implementation.

FIG. 10 is an example of relation-join queries and a gen-
erated union query, according to an implementation.

FIG. 11 is an example hierarchy traversal query, according
to an implementation.

DETAILED DESCRIPTION

The systems and methods described herein can be used to
efficiently maintain a lifecycle state for database objects with
complex hierarchies. The systems and methods described can
be used with any database that supports triggers and parti-
tioning, regardless of whether the database itself supports
reference partitioning. For example, a system can include a
lifecycle metadata framework that facilitates definition and
traversal of a hierarchy of database objects and uses inherit-
ance functions to determine the lifecycle status of a child,
regardless of the number of parents the child has or whether
the hierarchy includes cycles. The framework hides the syn-
chronization of the lifecycle state between children and par-
ents from the application programs and handles the partition
assignment of objects for the database. Thus, the framework
is database agnostic and can even be used when the hierarchy
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is implemented in more than one database (e.g., different
environments from different vendors). The lifecycle state of a
database object may be stored in a field in the table supporting
the object. The application program may update this field for
root objects and the framework may update it for all other
objects. Furthermore, the systems and methods provide on-
line maintenance operations that purge or archive deleted
objects efficiently without taking the database offline. While
the system described below uses the framework for reference
partitioning of alifecycle state, it is understood that the frame-
work can be used to implement reference partitioning based
on any field in databases that do not currently support refer-
ence partitioning or reference partitioning on complex hier-
archies. Accordingly, implementations are not limited to ref-
erence partitioning based on a lifecycle state.

FIG. 1 is a schematic diagram that illustrates an example
database object lifecycle reference partitioning system 100
(also referred to herein as “lifecycle reference partitioning
system” or “lifecycle system”). The lifecycle reference par-
titioning system 100 can be embodied, for example, on one or
more source computing devices. The lifecycle reference par-
titioning system 100 can be, for example, a server that
includes one or more computing devices 105, multiple serv-
ers that include one or more computing devices 105, etc.
Multiple computing devices 105 may be in communication
with each other via a communications network (not shown).
For example, the network can be wired or wireless and can
include, a local area network (LAN), a wide area network
(WAN), etc. implemented using, for example, gateway
devices, bridges, switches, and/or so forth. The network can
include one or more segments and/or can have portions based
on various protocols such as XCF, TCP/IP, SNA, Internet
Protocol (IP) and/or other communication protocols includ-
ing a proprietary protocol. The network can include at least a
portion of the Internet. In some implementations, the network
can include multiple computing devices and/or multiple
server devices.

The computing device 105 can include one or more hard-
ware processors 110 configured to execute one or more
machine executable instructions or pieces of software, firm-
ware, or a combination thereof. The computing device 105
caninclude, an operating system (not shown) and one or more
computer memories 115, such as a main memory, configured
to store one or more pieces of data, either temporarily, per-
manently, semi-permanently, or a combination thereof. The
memory 115 may include volatile memory, non-volatile
memory, or a combination thereof. The computing device 105
can also include one or more storage mediums 120, such as a
non-transitory computer-readable storage disk or flash
memory, configured to store data in a semi-permanent or
substantially permanent form.

In some implementations, the computing device 105 may
include one or more other hardware components not shown in
FIG. 1, such as for example, a display or monitor, a keyboard,
a touchscreen, a camera, a mouse, a touchpad, a trackpad, a
video processor, etc. Computing device 105 may also be in
communication with one or more client computing devices,
e.g., devices used by users to remotely execute application
programs 140, to build and maintain application programs
140, etc.

The lifecycle reference partitioning system 100 also
includes one or more databases 130 stored in one or more of
storage mediums 120 (e.g., disk, tape, main memory) of the
computing device 105. The database 130 may also be two
database environments from two different database vendors.
The database 130 can be any database that supports triggers
and partitioning. In a database a table generally represents an
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object, with each row in the table being a separate object.
Tables may also be considered classes, Thus, for example, a
datacenter object may be an instance of a datacenter class and
be stored in a row of a datacenter table. Partitioning is the
logical division of data of the same type, e.g, the logical
division of a table. For example, partitioning may be based on
the value in a field or combination of fields (columns), such as
a lifecycle state column. Triggers are user-defined (e.g., sys-
tem administrator, database administrator, application pro-
grammer, etc. defined) procedures that the database system
executes when certain database commands, e.g., insert,
update, or delete statements, are issued against the associated
database object. Triggers are not application specific, and are
thus transparent to the executing application program.

Storage medium 120 may include a lifecycle metadata
library 156. The lifecycle metadata library 156 includes a
metadata definition layer that supports reference partitioning
in any database that supports partitioning. FIG. 2 illustrates
one example of data elements used in a metadata definition
layer of the metadata library 156. The metadata library 156
may allow an application programmer, database administra-
tor, or other user to define a class hierarchy for database
objects, for example using the class hierarchy definition 205.
Each hierarchy may include one or more classes 210 as mem-
bers of the hierarchy. One or more of the classes may be
designated as a root node for the lifecycle of the hierarchy, for
example using the “is_lifecycle_hier_root” field in the class
210 definition. A hierarchy may have more than one root. The
lifecycle state of database objects that are a root class of the
hierarchy may be set explicitly by an application program,
while database objects that are non-root nodes (non-root
classes) in the hierarchy may be set by the triggers that are
part of the lifecycle reference partitioning framework. Thus,
the application may control the lifecycle state of the root
nodes and the system may use the framework, including
information supplied as part of the metadata library 156, to
ensure that the lifecycle state of the children in the hierarchy
are properly set according to the stage of the root node.

The class relations metadata table 215 may hold the class
relationship between the classes in the hierarchy. It persists
the parent class_id, the child class_id and the relation-join
query that identifies the join between the tables onto which
the classes are persisted. The relation join query is generated
based on the primary and foreign keys defining the referential
correspondence between parents and children. The relation-
join query is provided by the application programmer or
systems administrator or other user because it is data-driven
(e.g., specific to tables used to implement the hierarchy). The
relation-join query provides a join between the parent and
child and is based on the class identity attribute set 220 and/or
the class relation attribute set 225. The relation-join query
provides an opportunity to generate a hierarchical query that
traverses the hierarchy for a specific instance of the class.

The class identity attribute set 220 identifies the primary
key attributes of the corresponding tables that are instances of
the class, e.g. the tables onto which the underlying classes are
persisted. Thus, the class identity attribute set 220 enables the
system, from an instance of a parent class, to identify the
instances of its children, as will be explained below. In other
words, a parent may use class identity attribute set 220 to
identify the table columns used to identify instances of its
children. Because the primary key may include any number of
fields, the primary key may be defined as a set, and the class
identity attributes 230 may identify the individual fields that
make up the primary key.

The class relation attribute set 225 holds and the foreign
key attributes of the corresponding tables that are parents of
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the class. Thus, the class relation attribute set 225 for an
instance of a particular class enables the system to identify the
instances of its parents. In other words, a child may use class
relation attribute set 225 to identify the fields used to identify
instances of its parents. Because the foreign key may also
include a number of different fields, the foreign key may be
defined as a set and the class relation attributes 235 may
identify each of the fields in the set. In practice, all of the
attributes that make up the primary key or foreign key can be
identified by a globally unique identifier (GUID) persisted
with every instance of an object that acts as an alias for the
instance. In some implementations, the system may use this
GUID rather than the set of fields that make up the primary
key or foreign key.

Some of the data that is included in the metadata frame-
work 200, such as the class identity attribute set 220 and the
class relation attribute set 225 may be found in the database
catalog or similar structure of the various database environ-
ments. The lifecycle framework extracts this information to
make the system database agnostic. In other words, the meta-
data framework 200 enables the system to use lifecycle par-
titioning regardless of the type of underlying database, to use
the lifecycle reference partitioning with complex hierarchies,
oreven on hierarchies that operate over two different database
environments (e.g., databases from different vendors).

Based on the class relation metadata table 215, the database
triggers of the partition maintenance operations 158 imple-
ment the traversal of the hierarchy and synchronization of
lifecycle status of database objects. Itis understood that when
a change of the class hierarchy structure occurs the metadata
represented in FIG. 2 correspondingly needs to be regener-
ated.

The metadata framework 200 may also include other
attributes useful in optimizing traversal of the hierarchy. For
example, the classes 210 may include a hierarchy-traversal-
query field for storing a pre-generated query for finding the
children of an instance of the class. This query may be gen-
erated as described herein with regard to FIG. 5 and stored in
as an attribute of the class. This enables the system to avoid
generating the query each time a database trigger is invoked,
and is thus one performance optimization. Similarly, the
classes 210 table may also include a parent-retrieval-query
field for storing a pre-generated query for finding the parents
of an instance of the class.

Returning to FIG. 1, storage medium 120 may also include
one or more application programs 140. Application programs
140 may access data in the database 130, may manipulate the
data, report on the data, generate user-interfaces that allow a
user to insert, modify, and delete the data etc. In manipulating
the underlying data, the application programs 140 may
change the lifecycle state of the underlying root data objects.
For example, the lifecycle reference partitioning framework
may include an interface for the application program that
allows the application program to change the lifecycle state of
a root node. For example, the framework may provide a
change_lifecycle_stage( ) function for the application pro-
grams 140 to use. The function may take a root node and a
lifecycle state as parameters. As explained above, the root
node(s) of a hierarchy may be defined using the lifecycle
metadata library 156, for example by a field in the class 210
definition. In some implementations, the provided function
may prevent the application program 140 from changing the
lifecycle state of any node that is not defined as a root node in
the hierarchy.

Storage medium 120 may also include lifecycle triggers
152. Lifecycle triggers 152 may include procedures invoked
when a root database object is updated, when a child database
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object is added, or when a child database object has a change
in parent (e.g., the foreign key is updated). FIGS. 5-7 are
examples of lifecycle triggers 152, according to some imple-
mentations. Storage medium 120 may also include inherit-
ance functions 154. Inheritance functions 154 may be logic
used by the system to determine the lifecycle state of a child
node. The inheritance functions 154 may include logic for
locating the parent node or nodes, for determining the life-
cycle state of the parent(s), and for determining the lifecycle
state of the child node based on the stage(s) of the parent(s).
The inheritance functions 154 may include an inheritance
function for each non-root class and may be provided by an
application program, system administrator, or other user. In
some implementations, the inheritance function for a class
may be identified in the class metadata, for example as an
attribute or field in the classes 210 metadata of FIG. 2.

In system 100, the lifecycle triggers 152 set the lifecycle
state of a child node according to the parent relationship in
coordination with a lifecycle inheritance function 154 asso-
ciated with the child’s class. The inheritance function 154 for
a class can take a number of forms. For example, an inherit-
ance function may indicate that the child is active if all of the
parents are active. In some implementations the lifecycle state
may be represented by a numeric value, such as zero for
active, one for inactive, and two for deleted. The lifecycle
state may be a field (e.g., column) in a table onto which the
database object is persisted. In an implementation using the
lifecycle state enumeration set forth above, the corresponding
function for lifecycle inheritance may set the lifecycle state of
the child to the minimum lifecycle state of all parents.
Another example inheritance function may indicate the child
is not active if all of the parents are not active. Such a function
may set the lifecycle state of the child to the maximum stage
of the parents, for example when the enumeration example
for lifecycle state described above is used. Other inheritance
functions 154 may include selecting a controlling parent or a
relatively complex function mapping the lifecycle states of all
parents to a single lifecycle state to be inherited by the child.
The inheritance functions can be persisted in the lifecycle
metadata for the class, for example in a field in the class 210
object.

The storage device 120 may also include maintenance
operations 158. Maintenance operations 158 may include
procedures or computer instructions for purging or archiving
database objects in the deleted partition without using row-
level deletes, thus improving database performance without
incurring database outage time. For example, maintenance
operations 158 may cascade through the object hierarchy,
using the lifecycle metadata, and correspondingly purge or
archive the objects in the deleted partition in a high perfor-
mance manner, e.g., using the underlying partitioning main-
tenance commands provided by the database vendors.
Examples of such maintenance commands include truncate,
exchange, switch, detach, etc. However, because such com-
mands are issued at the database object level, traversing the
hierarchy allows the lifecycle partitioning system to effi-
ciently identify the nodes in the hierarchy ready for deletion
and to issue the proper partition command, avoiding row level
deletion and preventing data fragmentation. FIG. 8 illustrates
an example maintenance operation 158 in accordance with
some implementations.

FIG. 3 illustrates object diagrams for three examples of
complex class hierarchies. Of course, the examples are for
illustration only and implementations are not limited to the
example hierarchies shown. In the first example, the data
center hierarchy 305 has a data center class 310, a device class
315, a template class 320, and a component class 325. In the
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example of the data center hierarchy 305, the datacenter class
310 is designated as the lifecycle root. An instance of the
datacenter class 310 can have zero to many device class 315
instances as children and zero to many template class 320
instances as children. Each device class 315 instance may
have zero to many component class 325 instances as children.
Each template 320 may also have zero to many component
class 325 instances as children. Data center hierarchy 305
represents a ragged hierarchy because an instance of the
component class 325 may have two parents—one an instance
of the device class 315 and the other an instance of the
template class 320. In another example, an instance of the
component class 325 may have two different instances of the
device class 315 as parents. An example of database object
instances of the data center hierarchy 305 is illustrated as
hierarchy 405 of FIG. 4.

The virtual center hierarchy 350 illustrates another
example of a ragged hierarchy. The virtual center hierarchy
350 includes a virtual center class 355, a data center class 360,
and a host class 365. The virtual center class 355 is defined as
the root of the hierarchy and may have zero to many host class
365 instances as children and zero to many data center class
360 instances as children. The data center class 360 may also
have zero to many host class 365 instances as children. Thus,
an instance of the host class 365 can have at least two parents.
Such an arrangement is illustrated as hierarchy 450 of FIG. 4.

The project task assignment hierarchy 375 illustrates an
example of a cyclic hierarchy. In the project task assignment
hierarchy 375 an instance of a user class 380 owns an instance
of a project class 385. The project class 385 instance may
have one or more task class 390 instances as children. The
instances ofthe task class 390 may be defined in a hierarchical
structure, with a root task that is made of up child tasks, which
each may be made up of further tasks, etc. An instance of a
user class 380 may be assigned to an instance of a root task
390, e.g., a root task may be assigned to the owner of the
project. Thus, an instance of the task class 390 may be the
parent of an instance of the user class 380, which is the root of
the project task assignment hierarchy 375. Hierarchy 475 of
FIG. 4 illustrates an example of such an arrangement. It is
understood that the hierarchies illustrated in FIG. 3 are sim-
plified for the sake of explanation and brevity, and that imple-
mentations may include even more complex hierarchies.

FIG. 5 is a flowchart of a database trigger 500 invoked
when an application program changes the lifecycle status of a
root object in a hierarchy. Trigger 500 may be the only trigger
needed for maintenance of the reference partitioning of a root
object because deletes are handled via updates of the lifecycle
state (e.g., changing the stage to deleted) and an inserted
(new) root object has no children, so coordination of the
lifecycle state of children is unnecessary because children do
not yet exist. In some implementations, the constraint that
children do not yet exist for new root objects is protected by
the referential integrity (RI) of the database environment. In
other words, the database environment does not allow child
object to be created without a parent object and does not allow
aparent to be deleted when the child object still exists. Trigger
500 may be initiated after an update of the lifecycle state of a
root object. Accordingly, the lifecycle state of the root object
is set according to the value specified by the application
program prior to trigger 500 starting. When trigger 500
begins, the system traverses the hierarchy tree avoiding cycles
to the next level (510). Traversal may be accomplished
through a hierarchical query, for example one generated on
the fly or pre-generated and stored as part of the class defini-
tion, e.g., in class 210 of FIG. 2. Avoiding cycles is an option
specified as part of a hierarchical query. At each node in the
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next level, the system may apply the inheritance function for
the node (515). Applying the inheritance function includes
traversing the tree upwards to find the parents of the node, for
example using the relation join query specified in the class
relations metadata table 215. When the lifecycle state of the
parent or parents is obtained, the system may use the inher-
itance function for the class of the node to set the lifecycle
state of the current node (520). Because the lifecycle state of
a database object is used to partition the objects, when the
lifecycle state of a node changes the corresponding rows in
the database table migrate from partition to partition, accord-
ing to the new lifecycle state. Traversal of the tree from the
root node down continues (525, Yes) with the nodes at each
level applying their inheritance function and setting their
lifecycle state appropriately, until traversal is complete (525,
No).

In some implementations, the hierarchy traversal is accom-
plished by the use of the class relations metadata table 215
where the relation-join query is persisted. The construction of
the hierarchy traversal query can be described as follows:
using the class relations metadata table 215 via a hierarchical
query, reach all the nodes of the class relations metadata table
avoiding cycles; construct a union query containing all the
relation-join queries from the class relations metadata table
reached nodes returning the identifiers (e.g., a globally unique
identifier (guid) or primary key) for parent and child; and
using an outer hierarchical query avoiding cycles reach all of
the instance nodes using the result set (parent_guid,
child_guid) of the constructed union query. An example of a
constructed hierarchical traversal query for the virtual data-
center hierarchy 350 of FIG. 3 follows. It is understood that
the queries illustrated below are for the specific hierarchy 350
of FIG. 3, and given for the purposes of explanation and that
implementations are not limited to the examples given.

As indicated above, the construction of the hierarchy tra-
versal query begins with the relation join queries of the hier-
archy. FIG. 10 illustrates example relation-join queries for the
database objects in hierarchy 350. As illustrated in FIG. 3, the
virtual center class 355 can be a parent for the data center
class 360. Thus, class relations metadata table 215 has an
entry with the virtual center class 355 as the parent and the
data center class 360 as the child. The relation join query
attribute in this entry may be query 1005 of F1G. 10. The data
center class 360 may be a parent of the host class 365. Thus,
the class relations metadata table 215 has an entry with the
data center class 360 as the parent and the host class 365 as the
child and query 1015 of FIG. 10 as the relation-join query.
Finally, the virtual center class 355 may also have the host
class 365 as a child, so the relations metadata table 215 may
have an entry with the virtual center class 355 as the parent
and the host class 365 as the child with query 1010 of FIG. 10
as the relation-join query attribute of the entry. The relation
join queries may be supplied by a user, e.g., an application
programmer, database administrator, etc.

Using the three relation-join queries illustrated in FIG. 10,
the system may generate a hierarchy traversal query, for
example from the virtual center root to each of the descen-
dants in the hierarchy. To generate the query, the system may
first find the class relations metadata table entries 215 that are
in the hierarchy that has the virtual center as a root. For each
entry found, the system may use the relation-join query for
the entry to generate a union query. The union query for the
virtual center hierarchy 350 is illustrated as query 1020 of
FIG. 10. It includes each of the relation-join queries 1005,
1010, and 1015. From the union query the system may gen-
erate the hierarchical traversal query illustrated in FIG. 11.
Because this hierarchical traversal query has the virtual center
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as the root, the relation-join queries where the virtual center is
the parent are used to start the hierarchy traversal. The union
query generated in the previous step is used for the recursion
of'the hierarchical query. Cycles are avoided by the “where is
cycle=zero” clause. It is understood that a hierarchy traversal
query may be generated for any root of the hierarchy. As
illustrated in the example above, the root used determines the
relation-join queries used to generate the union query and the
starting point in the hierarchy traversal query.

In some implementations, the traversal query is pre-gener-
ated and stored as an attribute in the hierarchy-traversal-query
attribute of the class for performance optimization. Thus, the
query of FIG. 11 may be stored in the hierarchy-traversal-
query attribute of the virtual center instance of the class table
210. Of course, the query may also be constructed on the fly
as dynamic SQL embedded in the triggers and the lifecycle
partitioning maintenance functions. Storing the constructed
query as an attribute of the class is a preferred option when the
speed of the trigger action is valued. The same reasoning
applies for the parents retrieval query used for the calculation
of'the node’s lifecycle as a function of the application of the
inheritance function.

In some implementations, the hierarchy traversal could be
optimized by determining whether during the hierarchical
traversal the parent node of an arc has not changed lifecycle
state since the last visit of the arc (multiple visits are possible
due to “raggedness”). If the parent node has not changed, do
not calculate the lifecycle state of the child node at the point
of current reach of the node through the current arc.

FIG. 6 is a flowchart illustrating an example trigger 600 for
maintenance of reference partitioning after a child object is
inserted into the hierarchy, according to an implementation.
Thelifecycle state of a non-root object may not be available to
the application (it is hidden behind a covering view) so the
lifecycle state may be set via a “before trigger” available from
the database vendor. In case of MSQL—the corresponding
action can be achieved by an “instead of trigger”. The system
may insert a table row for the child object, and the insert may
start trigger 600. When trigger 600 begins, the system may
apply the inheritance function for the inserted child (610). As
described with regard to FIG. 5, applying the inheritance
function may include finding the parents of the inserted child
(e.g., using the parent retrieval query for the class table, or
generating the query on the fly using the relation join query of
the class relations table) to determine the lifecycle state of the
parents, and setting the lifecycle state of the inserted child
according to the function (615). Because the child is new, it
has no children and trigger 600 ends.

FIG. 7 is a flowchart illustrating an example trigger 700 for
maintenance of reference partitioning after a foreign key
update of a child object, according to an implementation. The
action of the trigger 700 may synchronize the lifecycle state
of'the updated child and other affected nodes of the hierarchy
according to the lifecycle states of the parents, including the
new parent. Trigger 700 may be activated after update of a
foreign key, e.g., giving the child a new parent in the hierar-
chy. In trigger 700, the system may apply the inheritance
function for the child (715), thereby traversing the tree
upwards to locate the parents, including the new parent, and
their current lifecycle states. The system may set the lifecycle
state of the child according to the inheritance function (720).
The child object just updated may be a parent of other chil-
dren. Accordingly, the system may traverse the hierarchy tree
down from the child object to its children (725), if any. At
each node below the child with the new parent, the system
may apply the inheritance function (730) and update the
lifecycle state according to the function (735), as described
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above with regard to FIG. 5. Traversing the tree downward
may continue until all children of the child object that was
given a new parent have been reached (740, No). Traversing
the tree down from the child object may use hierarchical
queries as explained above with regard to FIG. 5. Trigger 700
then ends, having synchronized the lifecycle state of the child
according to the stage(s) of its parent(s), and synchronized the
lifecycle state of the children of the child that was assigned a
new parent.

Implementations that use triggers 500, 600, and 700 with
Oracle databases may encounter a table mutating error (ex-
ception ORA-4091) for ragged hierarchies that are recursive
(e.g. parents persisted in the same table, such as hierarchy 405
of FIG. 4) or cyclic (e.g. hierarchy 475 of FIG. 4). This is
because the triggers query the table that caused the trigger to
fire, for example to get the parent information as part of
applying the inheritance function. Implementations may
avoid the table mutating error by the creation of a “before”
statement trigger to initialize the package to a known state,
creation of an “after” row level trigger to save the row lever
action within the package structures, and creation of an
“after” statement trigger to process the change using the
package structure. A package is an Oracle schema object that
groups logically related PL/SQL types, item, and subpro-
grams. A package usually has two parts, a specification (or
header) and a body, although the body can be optional. The
specification is the interface, declaring the types, variables,
constants, exceptions, cursors, and subprograms available for
use, and the body fully defines cursors and subprograms.
Other users may see details of the specification, but not the
body The solution to the table mutating error is also described
by Tom Kyte, “Avoiding Mutating Tables,” available at http://
asktom.oracle.com/pls/asktom/ASKTOM. download_
file?p_1ile=6551198119097816936.

FIG. 8 is a flowchart illustrating a process for performing
an efficient on-line maintenance process that uses the data-
base agnostic lifecycle framework, according to an imple-
mentation. The process 800 of FIG. 8 cascades down the
hierarchy, allowing the system to use database-provided par-
tition maintenance operations, rather than row-level com-
mands, to delete or archive deleted database objects. The
maintenance process may be executed periodically or as-
needed to optimize database usage and performance. The
system first receives the class to purge (805). The class is a
root in the hierarchy. In some implementations, if the pro-
vided class is not a root the process ends. The system finds a
database object of the provided class type (807) traverses the
tree, depth first, avoiding cycles, from the database object to
the leaves (810). A leaf is anode with no children. At aleaf the
system applies the maintenance operation if the lifecycle state
of the leaf node is “deleted” (815). In other words, the leaf
node must have a lifecycle status of deleted and be in the
“deleted” partition of the table. The maintenance operation
can be a purge or an archive operation. Database vendors
provide partition commands for these maintenance opera-
tions. For example, Oracle databases provide the TRUN-
CATE_PARTITION(object) and EXCHANGE_PARTI-
TION(object)  commands. MSSQL  provides a
SWITCH_PARTITION command. DB2 databases provide
DETACH, DELETE, and INSERT INTO commands, which
can be used to purge or archive objects in the partition. Of
course, other databases that support partitions and triggers
may supply similar maintenance commands.

The system continues traversing the hierarchy, depth first,
avoiding cycles (820, No), repeating step 815 at each leaf
node until the system has traversed the entire tree (820, Yes).
It is understood that as a leaf is truncated or archived, its
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parent loses a child, and that once a parent loses all its chil-
dren, it becomes a leaf node. Thus, as process 800 proceeds,
parent nodes become leaf nodes that can be truncated or
archived after their children have been truncated or archived.
After the system has traversed the entire tree for the particular
database object, the system may determine if another data-
base object with the class type of step 805 exists (825). If
another object does exist (825, Yes), the system repeats steps
807 to 820, traversing the tree of the next object. When all
objects have been evaluated (825, No), process 800 ends.

Performing the maintenance operation (truncate or
archive) in reverse order of the levels reached (e.g. bottom
first) also allows the partition commands provided by the
database vendor to be used because the rule for truncation of
a partitioned table is that the descendant partitions must be
empty. Using the database-provided partition commands in
combination with the bottom-first traversal of the hierarchy
results in a maintenance process that is fast and efficient and
does not require the database to be taken offline.

The truncate and exchange partition commands under Ref-
erential Integrity (RI) may not be supported by all DB ven-
dors (ex. SQL Server, DB2). In situations like this the RI
could be imposed via triggers—trigger based RI—or the RI
should be disabled for the duration of the maintenance opera-
tion.

FIG. 9 is a flowchart illustrating procedures that can be
used in an efficient on-line maintenance process in a database
that supports reference partitioning, according to an imple-
mentation. Oracle databases provide reference partitioning
for simple hierarchies, in other words, those without multiple
parents and without cycles. A system that uses an Oracle
database with simple hierarchies may use the reference par-
titioning provided by Oracle. However, the reference parti-
tioning provided by Oracle does not offer efficient on-line
maintenance, because they lack the cascading TRUNCATE
PARTITION and EXCHANGE PARTITION procedures.
Oracle TRUNCATE PARTITION does not cascade across the
object hierarchy. It has to be performed on every reference
partitioned table within the hierarchy. The rule for truncation
of a partition of a reference partitioned table or the root
partitioned table is—the descendant partitions must be
empty. The check for empty descendant partitions must be
performed.

The cascade may be automated through a stored procedure,
such as stored procedure 900 or 950 illustrated in FIG. 9. The
descendants of the reference partitioned hierarchy could be
retrieved through the REF_PTN_CONSTRAINT _NAME
column within the USER_PART_TABLES catalog table of
the Oracle database. The same applies for EXCHANGE
PARTITION. The procedures illustrated in FIG. 9 are
examples of two different approaches for retrieving the ref-
erence partitioned hierarchy for use in a cascading TRUN-
CATE PARTITION or a cascading EXCHANGE PARTI-
TION maintenance operation in an implementation that uses
Oracle’s partition by reference hierarchy. Procedure 900 of
FIG. 9 represents an Oracle-specific procedure. Procedure
950 of FIG. 9 represents an ANSI SQL procedure that can be
used with any database that supports ANSI SQL, including
Oracle databases.

Some databases have more than one way to implement
partitioning. For example DB2 databases offer Database Par-
titioning Feature (DPF) that partitions based on a single dis-
tribution key, Multidimensional Clustering (MDC) that par-
titions based on a cluster of columns having the same value,
and Table Partitioning (TP) that partitions based on the table
partitioning key. This key is usually a range value. Implemen-
tations of the lifecycle partitioning system may use any of the
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offered methods for partitioning, but Table Partition may be
best suited for faster cleaning of data through the use of the
DETACH operation.

Implementations of the various techniques described
herein may be implemented in digital electronic circuitry, or
in computer hardware, firmware, software, or in combina-
tions of them. Implementations may implemented as a com-
puter program product, i.e., a non-transitory computer pro-
gram tangibly embodied in an information carrier, e.g., in a
machine-readable storage device (e.g., a computer-readable
medium, a tangible computer-readable medium), for process-
ing by, or to control the operation of, data processing appa-
ratus, e.g., a programmable processor, a computer, or multiple
computers. In some implementations, a non-transitory tan-
gible computer-readable storage medium can be configured
to store instructions that when executed cause a processor to
perform a process. A computer program, such as the com-
puter program(s) described above, can be written in any form
of programming language, including compiled or interpreted
languages, and can be deployed in any form, including as a
stand-alone program or as a module, component, subroutine,
or other unit suitable for use in a computing environment. A
computer program can be deployed to be processed on one
computer or on multiple computers at one site or distributed
across multiple sites and interconnected by a communication
network.

Method steps may be performed by one or more program-
mable processors executing a computer program to perform
functions by operating on input data and generating output.
Method steps also may be performed by, and an apparatus
may be implemented as, special purpose logic circuitry, e.g.,
an FPGA (field programmable gate array) or an ASIC (appli-
cation-specific integrated circuit).

Processors suitable for the processing of a computer pro-
gram include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive instructions and data from a read-only memory or a
random access memory or both. Elements of a computer may
include at least one processor for executing instructions and
one or more memory devices for storing instructions and data.
Generally, a computer also may include, or be operatively
coupled to receive data from or transfer data to, or both, one
or more mass storage devices for storing data, e.g., magnetic,
magneto-optical disks, or optical disks. Information carriers
suitable for embodying computer program instructions and
data include all forms of non-volatile memory, including by
way of example semiconductor memory devices, e.g.,
EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., internal hard disks or removable disks; magneto-
optical disks; and CD-ROM and DVD-ROM disks. The pro-
cessor and the memory may be supplemented by, or incorpo-
rated in special purpose logic circuitry.

To provide for interaction with a user, implementations
may be implemented on a computer having a display device,
e.g., a cathode ray tube (CRT), a light emitting diode (LED),
or liquid crystal display (LCD) display device, for displaying
information to the user and a keyboard and a pointing device,
e.g., a mouse or a trackball, by which the user can provide
input to the computer. Other kinds of devices can be used to
provide for interaction with a user as well; for example,
feedback provided to the user can be any form of sensory
feedback, e.g., visual feedback, auditory feedback, or tactile
feedback; and input from the user can be received in any form,
including acoustic, speech, or tactile input.

Implementations may be implemented in a computing sys-
tem that includes a back-end component, e.g., as a data server,
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or that includes a middleware component, e.g., an application
server, or that includes a front-end component, e.g., a client
computer having a graphical user interface or a Web browser
through which a user can interact with an implementation, or
any combination of such back-end, middleware, or front-end
components. Components may be interconnected by any
form or medium of digital data communication, e.g., a com-
munication network. Examples of communication networks
include a local area network (LAN) and a wide area network
(WAN), e.g., the Internet.

While certain features of the described implementations
have been illustrated as described herein, many modifica-
tions, substitutions, changes and equivalents will now occur
to those skilled in the art. It is, therefore, to be understood that
the appended claims are intended to cover all such modifica-
tions and changes as fall within the scope of the implemen-
tations. It should be understood that they have been presented
by way of example only, not limitation, and various changes
in form and details may be made. Any portion ofthe apparatus
and/or methods described herein may be combined in any
combination, except mutually exclusive combinations. The
implementations described herein can include various com-
binations and/or sub-combinations of the functions, compo-
nents and/or features of the different implementations
described.

What is claimed is:
1. A computer-implemented method in a database parti-
tioned based on a lifecycle state for database objects, each
database object being a row in a table and the database objects
being organized in a hierarchy, the method comprising:
receiving, from an application program, a new lifecycle
state for a root database object in the hierarchy;

updating the lifecycle state for the root object, thereby
causing a table row associated with the root object to
change partitions in the database;

locating a first database object that is a child of the root

object in the hierarchy;

applying an inheritance function associated with a class of

the child object to determine a lifecycle state for the first
database object;

when the determined lifecycle state differs from a current

lifecycle state for the first database object, changing the
current lifecycle state to the determined lifecycle state
and moving a table row for the first database object to a
partition associated with the determined lifecycle state;
and

repeating the locating, applying, and changing for all chil-

dren of the root object.

2. The computer-implemented method of claim 1, wherein
the first database object has at least two parent objects in the
hierarchy and applying the inheritance function includes:

determining the parent objects using a parent retrieval

query associated with the class of the first database
object; and

determining a lifecycle state for the determined parent

objects.

3. The computer-implemented method of claim 1, wherein
the inheritance function is stored as an attribute of the class in
a metadata table.

4. The computer-implemented method of claim 1, wherein
the database does not support reference partitioning.

5. The computer-implemented method of claim 1, wherein
the new lifecycle state for the root object is a delete stage and
the method further comprises:
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traversing the hierarchy from the root object, depth first,

avoiding cycles; and

at each leaf object of the hierarchy:

determining that a lifecycle state for the leaf object is a
deleted stage, and

issuing a partitioning maintenance command for the
database for the leaf object.

6. The computer-implemented method of claim 5, wherein
traversing the hierarchy is performed in accordance with a
relation-join query associated with a class of the root object.

7. The computer-implemented method of claim 1, wherein
when the application program updates a foreign key of a
second database object, the method further comprises:

applying an inheritance function associated with a class of

the second database object to determine a lifecycle sta-
tus of the second database object;

setting a current lifecycle status of the second database

object to the determined lifecycle status;

locating a third database object that is a child of the second

database object in the hierarchy;

applying an inheritance function associated with a class of

the third database object to determine a lifecycle state for
the third database object;

when the determined lifecycle state differs from a current

lifecycle state for the third database object, changing the
current lifecycle state to the determined lifecycle state
and moving a table row for the third database objectto a
partition associated with the determined lifecycle state;
and

repeating the locating, applying, and changing for all chil-

dren of the second database object.

8. The computer-implemented method of claim 1, wherein
when the application program inserts a second database
object into the hierarchy, the second database object being a
non-root object for the hierarchy, the method further com-
prises:

applying an inheritance function associated with a class of

the second database object to determine a lifecycle state
for the second database object; and

wherein a table row for the second database object is stored

in a partition associated with the determined lifecycle
state for the second database object.

9. The computer-implemented method of claim 1, wherein
the hierarchy includes database objects stored in at least two
databases from different vendors.

10. A system for reference partitioning database objects by
lifecycle state, the system comprising:

at least one hardware processor;

at least one database environment, the database environ-

ment supporting triggers and partitioning;

at least one application program; and

memory storing:

a lifecycle metadata framework that:
identifies classes in a ragged hierarchy of database
objects,
identifies at least one class as a root of the hierarchy,
identifies, for each non-root class, a lifecycle inherit-
ance function for the class, and
identifies, for each parent class-child class pair in the
hierarchy, a relation-join query, the relation-join
query being a join between tables in the database
environment onto which the parent class and child
class are persisted, and
triggers that use the framework to maintain lifecycle
states for non-root database objects, including at least
a first trigger invoked after a lifecycle state of a data-
base object in a root class is changed, a second trigger
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invoked when a non-root database object is inserted,
and a third trigger invoked when a non-root database
object has a change in parent.

11. The system of claim 10, wherein the first trigger uses
the lifecycle metadata framework to:

traverse the hierarchy from the database object in the root

class downwards, avoiding cycles; and

seta lifecycle state of each child database object reached in

the traversal according to the lifecycle inheritance func-
tion for a class of the child database object, wherein the
child database object is assigned to a partition according
to its lifecycle state.

12. The system of claim 10, wherein the second trigger uses
the lifecycle metadata framework to:

determine a lifecycle state for each parent database object

of the inserted non-root database object;

apply the lifecycle inheritance function for the class of the

inserted non-root database object to determine a life-
cycle state for the non-root database object; and

assign the non-root database object to a partition according

to the determined lifecycle state.

13. The system of claim 10, wherein the third trigger uses
the lifecycle metadata framework to:

determine a lifecycle state for each parent database object

of the non-root database object;
apply the inheritance function for the class of the non-root
database object to determine a lifecycle state of the
non-root database object, wherein the database object is
assigned to a partition according to the lifecycle state;

assign the non-root database object to a partition according
to the determined lifecycle state;

traverse the hierarchy from the non-root database object

downwards, avoiding cycles; and

set a lifecycle state of each object reached in the traversal

according to the inheritance function for a class of the
object reached in the traversal.

14. The system of claim 10, wherein the memory further
stores instructions that, when executed by the at least one
processor, cause the system to perform operations compris-
ing:

receiving a root class of the hierarchy to purge;

selecting a database object of the root class;

traversing, using the framework, the hierarchy downward

from the database object, depth first, avoiding cycles;
and
at a leaf database object in the hierarchy:
determining whether a lifecycle state for the leaf data-
base object is a deleted stage, and
when the lifecycle state is a deleted stage, issuing a
truncate partition command for the leaf database
object, the truncate partition command being a com-
mand supplied by the database environment.
15. The system of claim 10, wherein the framework further
includes a hierarchy traversal query for at least some of the
classes and a parent retrieval query for at least some of the
classes.
16. The system of claim 15, wherein the hierarchy traversal
query for a first class is generated prior to the triggers being
invoked and is associated with the first class and stored in the
framework, and the generation of the hierarchy traversal
query for the first class includes:
using a hierarchical query, avoiding cycles, find the parent
class-child class pairs where the first class is the parent;

construct a union query of the relation-join queries for each
parent class-child class pair found, the union query
returning a result set of identifiers for the parent class
and the child class; and
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using an outer hierarchical query, avoiding cycles, to reach
database objects in the tables identified in the union
query using the result set of the union query.
17. The system of claim 15, wherein the parent retrieval
query for a first class is generated prior to the triggers being
invoked and is associated with first class and stored in the
framework, and the generation of the parent retrieval query
for the first class includes:
using a hierarchical query, avoiding cycles, find the parent
class-child class pairs where the first class is the child;

constructing a union query of the relation-join queries for
each parent class-child class pair found, the union query
returning a result set of identifiers for the parent class
and the child class; and

using an outer hierarchical query, avoiding cycles, to reach

database objects in the tables identified in the union
query using the result set of the union query.

18. A method of database object lifecycle maintenance for
database objects in a ragged hierarchy, the method compris-
ing:

receiving a class, the class being a root in the ragged hier-

archy, the hierarchy being defined through a lifecycle
framework that defines classes in the hierarchy, parent-
child relationships between classes, and, for each par-
ent-child relationship, stores a join query;
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selecting a database object instance of the class;

traversing the hierarchy downward from the database

object, depth first, avoiding cycles, the traversal being
accomplished via a hierarchical query generated at least
by a union of the join queries for parent-child relation-
ships related to the class; and

at a leaf database object reached by traversing the hierar-

chy:

determining whether the leaf database object is in a
partition for deleted objects, and

when the leaf database object is in the partition for
deleted objects, issuing a partition maintenance com-
mand for the leaf database object, the partition main-
tenance command being a database-provided com-
mand.

19. The method of claim 18, wherein the hierarchical query
generated is associated with the class and stored as part of the
framework.

20. The method of claim 18, wherein the maintenance
command is a truncate partition command.

21. The method of claim 18, wherein the maintenance
command is a command that archives the partition.
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